Scale-Up and Generalization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation

Author:

Sahray D.1,Ziskind G.1,Letan R.1

Affiliation:

1. Department of Mechanical Engineering, Heat Transfer Laboratory, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Abstract

This paper provides further insight in heat transfer from horizontal-base pin fin heat-sinks in free convection of air. The main objective is to assess the effect of base size, and this with regard to the effects of fin height and fin population density studied in a previous work (Sahray, D., et al., 2010, “Study and Optimization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation,” ASME J. Heat Transfer, 132(012503), pp. 1–13). To this end, experimental and numerical investigations are performed with sinks of different base sizes. The sinks are made of aluminum, with no contact resistance between the base and the fins, and are heated using foil electrical heaters. In the corresponding numerical study, the sinks and their environment are modeled using the FLUENT 6.3 software. In the experiments, sink bases of 100×100 mm2 and 200×200 mm2 are used, while in the numerical study sinks of 50×50 mm2 are investigated, too. In addition to the sinks with exposed, free edges (Sahray, D., et al., 2010, “Study and Optimization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation,” ASME J. Heat Transfer, 132(012503), pp. 1–13), the same sinks are explored also with their edges blocked. This is done in order to exclude the edge effect, thus making it possible to estimate heat transfer from a sink of an “infinite” base size. Heat-transfer enhancement due to the fins is assessed quantitatively and analyzed for various base sizes and fin heights. The effect of fin location in the array on its contribution to the heat-transfer rate from the sink is analyzed. By decoupling convection from radiation, a dimensional analysis of the results for natural convection is attempted. Interdependence of the base size and fin height effects on the heat transfer is demonstrated. A correlation that encompasses all the cases studied herein is obtained, in which the Nusselt number depends on the Rayleigh number, which uses the “clear” spacing between fins as the characteristic length, and on the dimensions of the fins and the base.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference12 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3