Predicting Heat Transfer From Unsteady Synthetic Jets

Author:

Arik Mehmet1,Icoz Tunc2

Affiliation:

1. School of Engineering, Ozyegin University, Cekmekoy, İstanbul, Turkey

2. General Electric Company, Global Research Center, Thermal Systems Laboratory, Niskayuna, NY 12309

Abstract

Synthetic jets are piezo-driven, small-scale, pulsating devices capable of producing highly turbulent jets formed by periodic entrainment and expulsion of the fluid in which they are embedded. The compactness of these devices accompanied by high air velocities provides an exciting opportunity to significantly reduce the size of thermal management systems in electronic packages. A number of researchers have shown the implementations of synthetic jets on heat transfer applications; however, there exists no correlation to analytically predict the heat transfer coefficient for such applications. A closed form correlation was developed to predict the heat transfer coefficient as a function of jet geometry, position, and operating conditions for impinging flow based on experimental data. The proposed correlation was shown to predict the synthetic jet impingement heat transfer within 25% accuracy for a wide range of operating conditions and geometrical variables.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference22 articles.

1. http://www.apple.com/iphone/

2. http://www.samsung.com/us/function/search/resultList.do?searchWord=rant

3. Piezoelectric Fans: Heat Transfer Enhancements or Electronics Cooling;Petroski

4. Piezoelectric Actuators for Low-Form-Factor Electronics Cooling;Açikalin

5. Ionic Winds for Locally Enhanced Cooling;Go;J. Appl. Phys.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3