The Phonon Thermal Conductivity of Single-Layer Graphene From Complete Phonon Dispersion Relations

Author:

Gu Yunfeng1,Ni Zhonghua2,Chen Minhua2,Bi Kedong2,Chen Yunfei2

Affiliation:

1. College of Electronic and Mechanical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Key Laboratory of MEMS of China Educational Ministry, Southeast University, Nanjing, 210096, People’s Republic of China

2. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Key Laboratory of MEMS of China Educational Ministry,Southeast University, Nanjing, 210096, People’s Republic of China

Abstract

In this paper, the phonon scattering mechanisms of single-layer graphene are investigated based on the complete phonon dispersion relations. According to the selection rules that a phonon scattering process should obey the energy and momentum conservation conditions, the relaxation rates of combining and splitting umklapp processes can be calculated by integrating the intersection lines between different phonon mode surfaces in the phonon dispersion relation space. The dependence of the relaxation rates on the wave vector directions is presented with a three-dimensional surface over the first Brillouin zone. It is found that the reason for the optical phonons contributing little to heat transfer is attributed to the strong umklapp processes but not to their low phonon group velocities. The combining umklapp scattering processes involving the optical phonons mainly decrease the acoustic phonon thermal conductivity, while the splitting umklapp scattering processes of the optical phonons mainly restrict heat conduction by the optical phonons themselves. Neglecting the splitting processes, the optical phonons can contribute more energy than that carried by the acoustic phonons. Based on the calculated phonon relaxation time, the thermal conductivities contributed from different mode phonons can be evaluated. At low temperatures, both longitudinal and in-plane transverse acoustic phonon thermal conductivities have T2 temperature dependence, and the out-of-plane transverse acoustic phonon thermal conductivity is proportion to T3/2. The calculated thermal conductivity is on the order of a few thousands W/(m K) at room temperature, depending on the sample size and the edge roughness, and is in agreement well with the recently measured data in the temperature range from about 350 K to 500 K.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3