A Novel Approach for Computational Fluid Dynamics Analysis of Mean Wind Loads on Heliostats

Author:

Durán R.L.1,Hinojosa J.F.1,Sosa-Flores P.1

Affiliation:

1. Universidad de Sonora (UNISON) Department of Chemical Engineering and Metallurgy, , Boulevard Rosales y Luis Encinas, Hermosillo, CP 83000 Sonora , México

Abstract

Abstract A computational fluid dynamics study about the aerodynamic loads over a heliostat due to an atmospheric boundary layer flow using a modified k–ɛ turbulence model is presented. A new formulation is used, in which the model quantities vary with the velocity field. Modified wall functions for roughness were used at the bottom of the computational domain to achieve horizontal homogeneity of the airflow. Good horizontal homogeneity for the streamwise and spanwise velocity and turbulence intensity profiles were found. The incident profiles were compared with the inlet ones. The average percentage differences were 0.22% for velocity and 0.43% for turbulent intensity. Good agreement was found between the numerical data and theoretical values of the streamwise and spanwise shear stress at the bottom of the domain. The aerodynamic coefficients of the heliostat at different elevation angles were obtained, and a good agreement was found between the numerical data concerning the wind tunnel experimental values. An average percentage difference of 3.1% was found for drag, 6.5% for lift, and 6.0% for overturning. A significant improvement was obtained by using this new formulation with respect to a non-modified k–ɛ turbulence model. The average differences of the aerodynamic coefficients were 6.6% for drag, 12.4% for lift, and 10.1% for overturning. The velocity, turbulent kinetic energy, and pressure fields at different elevation angles were analyzed. It was found that at an elevation of 60 deg, the stagnation point of the flow occurs at the superior edge of the heliostat, causing the maximum lift force over the structure.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Trends in Renewable Energy

2. Renewable Energy Cost Analysis—Concentrating Solar Power;IRENA,2010

3. Compensation of Gravity Induced Heliostat Deflections for Improved Optical Performance;Yuan;ASME J. Sol. Energy Eng.,2015

4. Structural Dynamics Testing and Analysis for Design Evaluation and Monitoring of Heliostats;Todd Griffith;ASME J. Sol. Energy Eng.,2014

5. Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis;Vásquez-Arango;ASME J. Sol. Energy Eng.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3