Affiliation:
1. Oakland University, Rochester, MI
Abstract
A mathematical model and an experimental procedure are presented for studying the self-loosening phenomenon of threaded fasteners that are subjected to cyclic transverse loads. The effect of thread and underhead friction coefficients, the hole clearance, and the frequency and the amplitude of the transverse excitation are investigated. The experimental set up is made of a single-bolt joint, which is subjected to a cyclic transverse displacement or force. For each variable, the drop in the fastener tension and the joint clamp load versus the number of cycles is recorded and analyzed. In the mathematical model, the linear and angular motion of the bolt head is formulated in terms of the system properties and the external cyclic transverse excitation. The mathematical model provides the bolt rotation in the loosening direction, which causes the partial or full loss of the clamp load. An iterative MATLAB code is developed and used for the calculation of tension drop-off in the fastener tension due the self-loosening. Mathematical and experimental results are compared for various levels of system and external loading variables.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献