The Design and Testing of a Molten Salt Steam Generator for Solar Application

Author:

Allman W. A.1,Smith D. C.1,Kakarala C. R.2

Affiliation:

1. The Babcock and Wilcox Company, Barberton, OH 44203

2. Functional Design, The Babcock and Wilcox Company, Barberton, OH 44203

Abstract

This paper describes the design and testing of the Steam Generator Subsystem (SGS) for the Molten Salt Electric Experiment at Sandia Laboratories in Albuquerque, New Mexico. The Molten Salt Electric Experiment (MSEE) has been established at the Department of Energy’s five megawatt thermal Solar Central Receiver Test Facility, to demonstrate the feasibility of the molten salt central receiver concept. The experiment is capable of generating 0.75 megawatts of electric power from solar energy, with the capability of storing seven megawatt-hours of thermal energy. The steam generator subsystem transfers sensible heat from the solar-heated molten nitrate salt to produce steam to drive a conventional turbine. This paper discusses the design requirements dictated by the steam generator application and also reviews the process conditions. Details of each of the SGS components are given, featuring the aspects of the design and performance unique to the solar application. The paper concludes with a summary of the test results confirming the overall design of the subsystem.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and optimization of molten salt printed circuit steam generators;Applied Thermal Engineering;2024-02

2. Molten salt for advanced energy applications: A review;Annals of Nuclear Energy;2022-05

3. Mixed convection heat transfer of molten salt outside coiled tube;International Communications in Heat and Mass Transfer;2021-01

4. Heat transfer performance of U-tube molten salt steam generator;International Journal of Heat and Mass Transfer;2020-10

5. Experimental investigation on the shell-side heat transfer performance of molten salt steam generator;International Journal of Heat and Mass Transfer;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3