Open-Loop Nonlinear Vibration Control of Shallow Arches via Perturbation Approach

Author:

Lacarbonara W.1,Chin C.-M.2,Soper R. R.3

Affiliation:

1. Dipartimento di Ingegneria Strutturale e Geotecnica, University of Rome La Sapienza, via Eudossiana, 18 Rome 00184, Italy

2. VSAS Center General Motors Corporation, MC 480-305-200, 6440 E. 12 Mile Rd., Warren, MI 48090-9000

3. Westvaco Covington Research Laboratory, 752 N. Mill Road, Covington, VA 24426

Abstract

An open-loop nonlinear control strategy applied to a hinged-hinged shallow arch, subjected to a longitudinal end-displacement with frequency twice the frequency of the second mode (principal parametric resonance), is developed. The control action—a transverse point force at the midspan—is typical of many single-input control systems; the control authority onto part of the system dynamics is high whereas the control authority onto some other part of the system dynamics is zero within the linear regime. However, although the action of the controller is orthogonal, in a linear sense, to the externally excited first antisymmetric mode, beneficial effects are exerted through nonlinear actuator action due to the system structural nonlinearities. The employed mechanism generating the effective nonlinear controller action is a one-half subharmonic resonance (control frequency being twice the frequency of the excited mode). The appropriate form of the control signal and associated phase is suggested by the dynamics at reduced orders, determined by a multiple-scales perturbation analysis directly applied to the integral-partial-differential equations of motion and boundary conditions. For optimal control phase and gain—the latter obtained via a combined analytical and numerical approach with minimization of a suitable cost functional—the parametric resonance is cancelled and the response of the system is reduced by orders of magnitude near resonance. The robustness of the proposed control methodology with respect to phase and frequency variations is also demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3