Numerical Analysis on Thermal Behavior of Composite Wall Combined Autoclaved Aerated Concrete With Thermal Insulting Material in Summer Day

Author:

Yu Cairui1,Shen Dongmei11,Tu Jinsong11,Chen Gulei22,Chai Luxiu11

Affiliation:

1. West Anhui University College of Architecture and Civil Engineering, , Lu’an 237012 , China

2. Anhui Jianzhu University College of Civil Engineering, , Anhui, Hefei 230601 , China

Abstract

Abstract Thermal insulation material (TIM) is commonly employed to enhance the thermal behavior of the lightweight walls. To further obtain the energy-saving effect of the walls, the composite wall (ATIM) combined autoclaved aerated concrete (AAC) block with TIM was present in this study. A testing rig with an ATIM wall was constructed and tested in summer design days, while the numerical modeling was developed and validated using the experimental data. Furthermore, reference walls of the brick and AAC with the same dimension as the ATIM wall were established to evaluate its thermal behavior. The thermal behavior and economic evaluation of the ATIM wall were then investigated by varying the thickness and position of the TIM using the numerical method. And the research results indicated that: (1) the average inner surface temperature of the ATIM wall is approximately 1.1 °C lower than that of the AAC wall, 1.3 °C lower than that of brick wall, the thickness of TIM is positively correlated with decreasing wall surface temperature, while TIM positions have minimal impact on reducing surface temperature; (2) heat gain reduction ratio for ATIM wall (δ = 20 mm) is approximately 52.7%, which is 8.1% higher than that of AAC wall, and variation in TIM position can decrease the heat gain, with inside or outside placement being more effective than positioning it in the middle part; (3) CO2 emission saving (CO2ES) and electricity cost saving (ECS) for room C (ATIM wall) is approximately 7.05 kg/100 m3/day and 5.23 RMB/100 m3/day, respectively, outperforming room A (brick wall) and room B (AAC wall) in terms of energy efficiency and economic benefits.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3