Robust Control of Exo-Abs, a Wearable Platform for Ubiquitous Respiratory Assistance

Author:

Rezaei Parham1ORCID,Lee Sang-Yoep23ORCID,Cho Kyujin4,Hahn Jin-Oh1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Maryland , College Park, MD 20742

2. Department of Mechanical Engineering, MIT , Cambridge, MA 02139

3. Massachusetts Institute of Technology

4. Department of Mechanical Engineering, Seoul National University , Seoul 08826, South Korea

Abstract

Abstract Existing noninvasive breathing assist options compatible with out-of-hospital settings are limited and not appropriate to enable essential everyday activities, thereby deteriorating the quality of life. In our prior work, we developed the Exo-Abs, a novel wearable robotic platform for ubiquitous assistance of respiratory functions in patients with respiratory deficiency. This paper concerns the development of a model-based closed-loop control algorithm for the Exo-Abs to automate its breathing assistance. To facilitate model-based development of closed-loop control algorithms, we developed a control-oriented mathematical model of the Exo-Abs. Then, we developed a robust absolutely stabilizing gain-scheduled proportional-integral control algorithm for automating the breathing assistance with the Exo-Abs, by (i) solving a linear matrix inequality formulation of the Lyapunov stability condition against sector-bounded uncertainty and interindividual variability in the mechanics of the abdomen and the lungs and (ii) augmenting it with a heuristic yet effective gain scheduling algorithm. Using in silico evaluation based on realistic and plausible virtual patients, we demonstrated the efficacy and robustness of the automated breathing assistance of the Exo-Abs under a wide range of variability in spontaneous breathing and Exo-Abs efficiency: the absolutely stabilizing gain-scheduled proportional-integral control resulted in small exhalation trajectory tracking error (<30 ml) with smooth actuation, which was superior to (i) its proportional-integral control counterpart in tracking efficacy and to (ii) its proportional-integral-derivative control counterpart in chattering.

Funder

Ministry of Health and Welfare

National Research Foundation of Korea

Office of Naval Research

Publisher

ASME International

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3