An Experimental and Analytical Study of Vortex-Flow Temperature Separation by Superposition of Spiral and Axial Flows: Part 1

Author:

Lay J. E.1

Affiliation:

1. Mechanical Engineering Department, Michigan State University, East Lansing, Mich.

Abstract

This paper reports on an experimental and analytical study of compressible flow in a uniflow vortex tube. Part 1 deals with an experimental study, Part 2 with the analytical study. Its purpose is to provide a better understanding of the separation of a gas stream into regions of high and low stagnation temperatures, there being at present little agreement as to the theory of operation. The problem is first approached from the experimental standpoint. A large, multipurpose vortex tube is so designed and built that pressure, temperature, and velocity traverses can be taken at six different stations throughout the length of the tube. Pressure, temperature, and velocity traverses are taken by means of hypodermic probes. Velocities are checked by means of a miniature hot-wire anemometer. Data are taken for different runs of inlet pressures and plotted against radial distance. Flow visualization is obtained by means of liquid injection. The analytical study consists of using superposition for the solution of the flow equations. It begins with potential vortex flow in the plane. The solution of this flow is characterized by the existence of sonic or limit circles. Superposition of a sink flow to the vortex solution yields a spiral flow in the plane. The general solution in space is obtained by addition of a uniform axial velocity to the spiral flow. When viscosity effects are considered, the potential vortex changes into a forced vortex, and the solution becomes a superposition of a viscous compressible sink to a forced vortex. Performance or stagnation temperature separation is expressed as function of the ratio of vortex strength to sink strength.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Vortex Tube Refrigeration System by Experimental Method;Materials, Design and Manufacturing for Sustainable Environment;2022-09-29

2. Temperature drop in a vortex tube;Journal of the Korean Physical Society;2022-09-09

3. Performance analysis of vortex tube refrigeration system by experimental method;THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021;2022

4. Experimental and numerical investigation of energy separation in counterflow and uniflow vortex tubes;International Journal of Refrigeration;2021-03

5. Review of vortex tube: a sustainable and energy separation device for multi-purpose applications;Australian Journal of Mechanical Engineering;2020-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3