Affiliation:
1. Department of Industrial and Enterprise, Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Abstract
Abstract
Conceptual design of spatial compliant mechanisms with distinct input and output ports may be hard because of its complex interconnected topology and is currently accomplished by computationally intensive automated techniques. This paper proposes a user insightful method for generating conceptual compliant topology solutions. The method builds on recent advances where the compliant mechanism deformation is represented as load flow in its constituent members. The nature of load flow enables functional decomposition of compliant mechanisms into maximally decoupled building blocks, namely, a transmitter member and a constraint member. The proposed design methodology seeks to synthesize spatial compliant designs by systematically combining transmitter-constraint members first, identifying kinematically feasible transmitter load paths between input(s) and output(s), and then selecting appropriate constraints that enforce the load path. The paper proposes four design steps to generate feasible solutions and four additional guidelines to optimize load paths and constraint orientations. The method is applied with equal ease to three spatial complaint mechanism examples that belong to single-input single-output, multiple-input single output, and single-input multiple-output mechanisms.
Funder
National Science Foundation
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference30 articles.
1. Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications;Kota;IEEE/ASME Trans. Mechatron.,1999
2. Ananthasuresh, G. K.
, 1994, “A New Design Paradigm in Microelectromechanical Systems and Investigations on Compliant Mechanisms,” Ph.D thesis, University of Michigan, Ann Arbor, MI.
3. Flexures
4. Characteristics of Beam-Based Flexure Modules;Awtar;ASME J. Mech. Des.,2007
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献