An Empirical Stationary Fuel Cell Model Using Limited Experimental Data for Identification

Author:

Meiler M.1,Hofer E. P.2,Nuhic A.1,Schmid O.3

Affiliation:

1. Deutsche ACCUmotive GmbH & Co. KG, Neue Str. 95, D-73230 Kirchheim/Teck, Germany e-mail:

2. University of Ulm, Albert-Einstein-Allee 41, D-89081 Ulm, Germany e-mail:

3. Daimler AG, Neue Str. 95, D-73230 Kirchheim/Teck, Germany e-mail:

Abstract

New technologies for efficient operation of fuel cells require modern techniques in system modeling. Such fuel cell models do not require giving any information about physical mechanisms or internal states of the system. They must be rather precise and should consume less computing time. From the point of view of system theory, polymer electrolyte membrane fuel cells (PEMFC) are multiple input and single output (MISO) systems. The inputs of a fuel cell are the drawn current, the gas pressures at anode and cathode side, and the humidity of these gases which influence the system output, namely the cell voltage, in a nonlinear way. The state of the art in the industry is to describe such nonlinear systems by the usage of lookup tables with a large amount of data. An alternative way to model the input-output behavior of nonlinear systems is the usage of so called black-box and gray-box model approaches. In the last decade, artificial neuronal networks (ANN) became more popular in black-box modeling of nonlinear systems with multiple inputs. Further, if some of the internal processes of a nonlinear system can be mathematically described, a gray-box model is more preferred. In the first part of this paper, the suitability of ANN's in the form of a multilayer perceptron (MLP) network with different numbers of hidden neurons is investigated. A way to confirm the validity for the identified network was worked out. In the second part of this contribution, a gray-box model, valid for a large operating area, based on published semi-empirical models is introduced. Six experimental campaigns for parameter identification and model validation were carried out. The five inputs previously described were varied in a wide range to cover a large operating range. In the last part of this paper, both modeling approaches are investigated with respect to their ability to identify model parameters using a limited number of experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3