Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2

Author:

Pecnik Rene1,Rinaldi Enrico,Colonna Piero2

Affiliation:

1. e-mail:

2. Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands

Abstract

The merit of using supercritical CO2(scCO2) as the working fluid of a closed Brayton cycle gas turbine is now widely recognized, and the development of this technology is now actively pursued. scCO2 gas turbine power plants are an attractive option for solar, geothermal, and nuclear energy conversion. Among the challenges that must be overcome in order to successfully bring the technology to the market is that the efficiency of the compressor and turbine operating with the supercritical fluid should be increased as much as possible. High efficiency can be reached by means of sophisticated aerodynamic design, which, compared to other overall efficiency improvements, like cycle maximum pressure and temperature increase, or increase of recuperator effectiveness, does not require an increase in equipment cost, but only an additional effort in research and development. This paper reports a three-dimensional computational fluid dynamics (CFD) study of a high-speed centrifugal compressor operating with CO2 in the thermodynamic region slightly above the vapor–liquid critical point. The investigated geometry is the compressor impeller tested in the Sandia scCO2 compression loop facility. The fluid dynamic simulations are performed with a fully implicit parallel Reynolds-averaged Navier–Stokes code based on a finite volume formulation on arbitrary polyhedral mesh elements. In order to account for the strongly nonlinear variation of the thermophysical properties of supercritical CO2, the CFD code is coupled with an extensive library for the computation of properties of fluids and mixtures. A specialized look-up table approach and a meshing technique suited for turbomachinery geometries are also among the novelties introduced in the developed methodology. A detailed evaluation of the CFD results highlights the challenges of numerical studies aimed at the simulation of technically relevant compressible flows occurring close to the liquid–vapor critical point. The data of the obtained flow field are used for a comparison with experiments performed at the Sandia scCO2 compression-loop facility.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference33 articles.

1. Carbon Dioxide Condensation Cycles for Power Production;J. Eng. Power Trans.,1969

2. The Supercritical Thermodynamic Power Cycle;Energ. Convers.,1968

3. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,2004

4. Operation and Analysis of a Supercritical CO2 Brayton Cycle,2010

5. Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles;J. Propul. Power,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3