Reduction of Heat Transfer to Gun Barrels by Wear-Reducing Additives

Author:

Brosseau T. L.1,Ward J. R.1

Affiliation:

1. U. S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Md.

Abstract

Heat transfer measurements were made in a 37-mm gun equipped with thermocouples at a series of axial and radial positions. The heat transferred to the gun barrel was markedly decreased when wear-reducing additives such as polyurethane foam, titanium dioxide/wax, and talc/wax were used as liners wrapped around the gun propellant. The reduction in heat transfer was greatest when the additives were folded over the forward end of the propellant at the base of the projectile. For a given configuration, all three additives tested reduced heat transfer to the gun barrel equally. This contradicts conclusions reached in full-scale tank-cannon firing tests that TiO2/wax and talc/wax are superior to polyurethane foam as erosion reducing additives. In these firings only the metal-oxide/wax liners had flaps folded over the forward end of the propelling charge.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3