The Control Torque on the Swash Plate of an Axial-Piston Pump Utilizing Piston-Bore Springs

Author:

Manring Noah D.1,Damtew Fikreadam A.2

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of Missouri–Columbia, Columbia, MO 65211

2. Dennison Hydraulics, Inc., 14249 Industrial Pkwy., Marysville, OH 43040

Abstract

This research begins by presenting a nontraditional pump design which utilizes a piston-bore spring. The piston-bore spring is included in this design for the purpose of holding the cylinder block against the valve plate and for forcing the pistons in the negative x-direction. By forcing the pistons in this direction, the piston-bore spring also assists in holding the slippers against the swash plate during the normal operation of the pump. Though these advantages of the design may be readily seen by inspection, it is not obvious how the control torque on the swash plate is effected by the piston-bore spring nor is it obvious how one would go about designing the spring to produce a favorable result. To clarify the benefit of this design, a mechanical analysis is conducted to describe the effect of the spring on the control torque itself. As a result of this analysis, a general equation which describes the swash-plate motion is presented. Within this equation, it may be seen that the spring force provides a restoring force on the swash plate which tends to stabilize the design. The piston-bore spring is also shown to be capable of eliminating the cross-over from a stroke increasing swash-plate torque to a stroke decreasing swash-plate torque. By eliminating this cross over, the backlash in the pump control (which is commonly observed in practice) can be prevented.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3