A Novel Ortho-Triplex Tensegrity Derived by the Linkage-Truss Transformation With Prestress-Stability Analysis Using Screw Theory

Author:

Wu Liheng1,Dai Jian S.23

Affiliation:

1. MOE Key Lab for Mechanism Theory and Equipment Design, International Centre for Advanced Mechanisms and Robotics, Tianjin University, Tianjin 300350, China

2. MOE Key Lab for Mechanism Theory and Equipment Design, International Centre for Advanced Mechanisms and Robotics, Tianjin University, Tianjin 300350, China;

3. Advanced Kinematics and Reconfigurable Robotics Lab, Center for Robotics Research, King’s College London, Strand, London WC2R 2LS, UK

Abstract

Abstract This paper presents a novel tensegrity structure derived from the tensegrity triplex (also called the simplex or regular triangular prism) by using the linkage-truss transformation. In this paper, the tensegrity triplex is first transformed into a 6R linkage with vertical members as revolute joints and is coined the triplex linkage. With this, a novel 6R linkage was derived, whose joint axes are perpendicular to the joint axes of the triplex linkage and is coined the ortho-triplex linkage. Rigidity analysis based on screw theory demonstrates that both obtained linkages with infinitesimal mobility are prestress stable. Finally, transforming the ortho-triplex linkage to a truss, by using cables for tensional members and struts for compressional members, leads to a novel tensegrity that is coined ortho-triplex tensegrity. A non-dimensional quadratic form is further provided to analyze the sensitivity of prestress-stability in terms of the structural parameters. The process of derivation of this novel tensegrity presents a new way of designing tensegrity structures with prestress-stability analysis based on screw theory.

Funder

Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3