Pressure Pulse Propagation in Two-Component Slug Flow

Author:

Martin C. Samuel1,Padmanabhan M.2

Affiliation:

1. School of Civil Engineering, Georgia Institute of Technology, Atlanta, Ga. 30332

2. Alden Research Laboratories, Worcester Polytechnic Institute, Holden, Mass. 01520

Abstract

The simple model of pressure pulse propagation in slug flow proposed by Henry, Grolmes, and Fauske has been extended by considering wave reflection and wave transmission at gas-liquid interfaces. A frequency-response model applied to a series of idealized gas and liquid slugs yields a pulse propagation speed that approaches the homogeneous model value as the number of slugs is increased for a given void fraction. All characteristic roots from the solution to a three-equation drift-flux model are related to the velocity of the center of mass of the mixture. The pulse propagation speed relative to this velocity is exactly equal to the homogeneous model value, however. Measured pulse propagation speeds in vertically downward slug flow are, as anticipated, much less than those predicted by the simple model of Henry, Grolmes, and Fauske, but slightly greater than the homogeneous model value. Measured pressure surges produced by the rapid closure of a downstream valve in a pipeline are reasonably well predicted by the drift-flux model. For the range of void fractions, pressures, and velocities encountered in this study, it is concluded that pressure pulse speeds and the magnitude of pressure surges in slug flow can be adequately predicted by a homogeneous model.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3