Partially Premixed Flame Stabilization in the Presence of a Combined Swirl and Bluff Body Influenced Flowfield: An Experimental Investigation

Author:

Sadanandan Rajesh1,Chakraborty Aritra2,Arumugam Vinoth Kumar2,Chakravarthy Satyanarayanan R.2

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, Kerala 695 547, India

2. Department of Aerospace Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600 036, India

Abstract

Abstract Optical and laser diagnostic measurements in a nonpremixed model gas turbine (GT) burner have been performed to investigate the effect of an increase in thermal power on the flame stabilization. The model GT burner has a large bluff body base with an annular swirl region, leading to a convergent-divergent flow field at the burner exit. Under the investigated conditions, the flame stabilizes predominantly in the diverging section characterized by the swirl flow with a central recirculation zone. With increasing thermal power, the reverse flow of hot burned gases is strengthened, with the hydroxyl radical (OH) planar laser induced fluorescence (PLIF) images indicating an increase in the temperature of the burned gases. The preferred flame stabilization location coincides with the inner shear layer between the reactant inflow and the reverse flow of hot burned gases. At high thermal power, the flame seems to stabilize in regions of high fluid dynamic strain rate, highlighting the influence of the reverse flowing burned gases in the evolution of the flammable mixture upstream. However, simultaneous and time-resolved measurements of the flow-field and scalar field are needed for direct quantification of this. The results are in agreement with the flame stabilization theories based on partial fuel-air mixing and streamline divergence. The flow is seen to decelerate upstream of the flame front and the flame stabilizes in a region of low velocity, created as a result of heat release diverging the streamlines ahead of it.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3