Plastic Instabilities in Spherical Vessels for Static and Dynamic Loading

Author:

Duffey T. A.12

Affiliation:

1. Mem. ASME

2. P.O. Box 1239, Tijeras, NM 87059

Abstract

Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME code (Sec. VIII, Div. 3) and 2008 and 2009 Addenda, and these are now a part of the 2010 code. There is now a local damage-mechanics based strain-exhaustion limit, including the well-known global plastic collapse limit. Moreover, Code Case 2564 (Sec. VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement-controlled and short-duration dynamic pressure loading is given. This instability condition is evaluated for six plastic and viscoplastic constitutive relations. The role of strain rate sensitivity on the instability point is investigated. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared with the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference22 articles.

1. The Significance of the Tensile Test to Pressure Vessel Design;Cooper;Welding Journal

2. Cooper, W. E. , 1981, “Rationale for a Standard on the Requalification of Nuclear Class 1 Pressure-Boundary Components,” Electric Power Research Institute, Palo Alto, CA, No. EPRI NP-1921.

3. The Ultimate Strength of Thin-Walled Shells and Circular Diaphragms Subjected to Hydrostatic Pressure;Mellor;Int. J. Mech. Sci.

4. Nakamura, T., Kaguchi, H., and Kubo, S., 2000, “Failure Strain of Thin Cylindrical Vessel Subjected to Dynamic Internal Pressure,” Design and Analysis of Pressure Vessels and Piping—2000, R.Baliga, ed., PVP-Vol. 399, pp. 47–54.

5. The Inertia Effect in the Tensile Plastic Instability of a Thin Spherical Shell;Hillier;Int. J. Mech. Sci.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3