Hydrodynamic Evaluation of a Generic Sail Used in an Innovative Prawn-Trawl Otter Board

Author:

Balash Cheslav1,Sterling David2,Broadhurst Matt3,Dubois Arno4,Behrel Morgan5

Affiliation:

1. University of Tasmania, Launceston, Australia

2. Sterling Trawl Gear Services, Brisbane, Australia

3. NSW Department of Primary Industries, Fisheries Conservation Technology Unit, Coffs Harbour, Australia

4. Delft University of Technology Ship Hydrodynamics & Structures, Delft, Netherlands

5. ENSTA Bretagne, Brest, France

Abstract

In prawn-trawling operations, otter boards provide the horizontal force required to maintain net openings, and are typically low aspect ratio (∼0.5) flat plates operating on the seabed at high angles of attack (AOA; 35–40°). Such characteristics cause otter boards to account for up to 30% of the total trawling resistance, including that from the vessel. A recent innovation is the batwing otter board, which is designed to spread trawls with substantially less towing resistance and benthic impacts. A key design feature is the use of a sail, instead of a flat plate, as the hydrodynamic foil. The superior drag and benthic performance of the batwing is achieved by (i) successful operation at an AOA of ∼20° and (ii) having the heavy sea floor contact shoe in line with the direction of tow. This study investigated the hydrodynamic characteristics of a generic sail by varying its twist and camber, to identify optimal settings for maximum spreading efficiency and stability. Loads in six degrees of freedom were measured at AOAs between 0 and 40° in a flume tank at a constant flow velocity, and with five combinations of twist and camber. The results showed that for the studied sail, the design AOA (20°) provides a suitable compromise between greater efficiency (occurring at lower AOAs) and greater effectiveness (occurring at higher AOAs). At optimum settings (20°, medium camber and twist), a lift-to-drag ratio >3 was achieved, which is ∼3 times more than that of contemporary prawn-trawling otter boards. Such a result implies relative drag reductions of 10–20% for trawling systems, depending on the rig configuration.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3