New Form of the Hamiltonian Equations for the Nonlinear Water-Wave Problem, Based on a New Representation of the DTN Operator, and Some Applications

Author:

Athanassoulis Gerassimos A.1,Papoutsellis Christos E.1

Affiliation:

1. National Technical University of Athens, Athens, Greece

Abstract

We present a new Hamiltonian formulation for the non-linear evolution of surface gravity waves over a variable impermeable bottom. The derivation is based on Luke’s variational principle and the use of an exact (convergent up to the boundaries) infinite-series representation of the unknown wave potential, in terms of a system of prescribed vertical functions (explicitly dependent on the local depth and the local free-surface elevation) and unknown horizontal modal amplitudes. The key idea of this approach is the introduction of two unconventional modes ensuring a rapid convergence of the modal series. The fully nonlinear water-wave problem is reformulated as two evolution equations, essentially equivalent with the Zakharov-Craig-Sulem formulation. The Dirichlet-to-Neumann operator (DtN) over arbitrary bathymetry is determined by means of a few first modes, the two unconventional ones being most important. While this formulation is exact, its numerical implementation, even for general domains, is not much more involved than that of the various simplified models (Boussinesq, Green-Nagdhi) widely used in engineering applications. The efficiency of this formulation is demonstrated by the excellent agreement of the numerical and experimental results for the case of the classical Beji-Battjes experiment. A more complicated bathymetry is also studied.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wave–current interaction on a free surface;Studies in Applied Mathematics;2021-08-10

2. Semi-explicit solutions to the water-wave dispersion relation and their role in the non-linear Hamiltonian coupled-mode theory;Journal of Engineering Mathematics;2019-01-17

3. An exact Hamiltonian coupled-mode system with application to extreme design waves over variable bathymetry;Journal of Ocean Engineering and Marine Energy;2017-08-16

4. Exact semi-separation of variables in waveguides with non-planar boundaries;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2017-05

5. Modified shallow water equations for significantly varying seabeds;Applied Mathematical Modelling;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3