Finite Element Modeling of Large Diameter Monopiles in Dense Sand for Offshore Wind Turbine Foundations

Author:

Ahmed Sheikh Sharif1,Hawlader Bipul1,Roy Kshama1

Affiliation:

1. Memorial University of Newfoundland, St. John’s, NL, Canada

Abstract

With increasing demand of energy, attention to the alternative sources of sustainable energy is getting priority over the last decades. Offshore wind turbine is one of them. The most widely used foundation system for the wind turbine is the monopile, which is a large diameter single pile. In the present study, three-dimensional finite element (FE) analyses are performed to evaluate the capacity of large diameter monopiles in dense sand using the Arbitrary Lagrangian-Eulerian (ALE) approach available in Abaqus/Explicit FE software. The behavior of sand is modeled using the Mohr-Coulomb (MC) and a modified Mohr-Coulomb (MMC) model where the pre-peak hardening, post-peak softening and the effects of mean effective stress and relative density on stress-strain behavior of dense sand are considered. Comparison with physical model test results shows that the MMC model can simulate better the load-displacement response than that with the MC model. The mechanisms involved in soil deformation are also explained using FE results.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3