Plastic Instability Pressure of Toroidal Shells

Author:

Vu Vu Truong1,Blachut J.1

Affiliation:

1. Department of Mechanical Engineering, University of Liverpool, Liverpool L69 3GH, UK

Abstract

This paper considers the determination of plastic instability pressure in toroidal shells under internal uniform pressure. Analytical and numerical approaches, as well as verification by experiments, are presented. This work is inspired by Mellor’s treatment (1983, Engineering Plasticity, Ellis Horwood Ltd., Chichester; 1960, “The Ultimate Strength of Thin-Walled Shells and Circular Diaphragms Subjected to Hydrostatic Pressure,” Int. J. Mech. Sci., 1, pp. 216–228; 1962, “Tensile Instability in Thin-Walled Tubes,” J. Mech. Eng. Sci., 4(3), pp. 251–256), which assumed that plastic instability occurs at the maximum load. A closed-form formula of plastic instability condition is derived analytically. This expression for toroidal shells turns out to be the general case of spherical and cylindrical shells given by Mellor. Then the corresponding pressure is obtained by semi-analytical analysis for a material with the strain hardening characteristic, σ=A(B+ε)n. For the numerical approach, plastic instability pressure is the maximum pressure at which a small pressure increment causes a very large deformation. This is identified by the slope of pressure—change of volume curve approaching zero. Both approaches predict the onset of instability at the inner equator point. Experimental results of two nominally identical stainless steel toroidal shells correlated well to both approaches in terms of the magnitude of pressure and failure location.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference28 articles.

1. Bunkoczy, B. , 1988, “Methods for Manufacturing a Toroidal Pressure Vessel,” U.S. Patent No. 4,790,472.

2. Pressure Vessel Design

3. A Theory of the Plastic Bulging of a Metal Diaphragm by Lateral Pressure;Hill;Philos. Mag.

4. Plastic Instability Under Plane Stress;Swift;J. Mech. Phys. Solids

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3