The Effect of Shape on the Motion and Stability of Marangoni Surfers

Author:

Sur Samrat1,Uvanovic Nicholas1,Masoud Hassan2,Rothstein Jonathan P.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003

2. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931

Abstract

Abstract The Marangoni propulsion of spheres and elliptical disks floating on the air–water interface were studied to understand the effect of particle shape on its motion and its stability at moderate Reynolds numbers. Self-propulsion of the Marangoni surfer was achieved by coating half of the spheres and the elliptical disks with either a solution of soap or isopropyl alcohol (IPA). The presence of the soap or IPA resulted in a surface tension gradient across the particles which propelled the particles in the direction of increasing surface tension. Beyond a critical velocity, a transition was observed from a straight-line motion to a rotational motion. These vortices were observed to shed above a critical Reynolds number resulting in an unbalanced torque that caused the particles to rotate. Increasing the aspect ratio between the major and minor axes of the elliptical disks was found to decrease their stability and greatly enhance their rate of rotation. This was especially true for elliptical disks traveling in a direction parallel to their major axis. The interactions between the particles and the wall of a Petri dish were also studied. Repulsive, concave curvature was found to decrease stability and enhance rotational motion, while attractive, convex curvature was shown to stabilize the straight-line motion of the spheres. For the neutrally buoyant elliptical disks, the presence of the bounding wall was found to greatly stabilize the straight-line motion of the elliptical disks when they were traveling in a direction parallel to their minor axis.

Publisher

ASME International

Subject

Mechanical Engineering

Reference37 articles.

1. The Marangoni Effects;Nature,1960

2. Measurements of the Amount of Oil Necessary in Order to Check the Motions of Camphor Upon Water;Proc. R. Soc. Lond.,1889

3. Mode-Switching of the Self-Motion of a Camphor Boat Depending on the Diffusion Distance of Camphor Molecules;J. Phys. Chem. C,2010

4. Easy Demonstration of the Marangoni Effect by Prolonged and Directional Motion: Soap Boat 2.0;J. Chem. Educ.,2013

5. Dynamics of a Fully Wetted Marangoni Surfer at the Fluid–Fluid Interface;Soft Matter,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3