Focused Electromagnetic Acoustic Transducers for Lamb Wave Inspection

Author:

Cregeen Joseph S.1,Edwards Rachel S.11

Affiliation:

1. University of Warwick Department of Physics, , Coventry CV4 7AL , UK

Abstract

Abstract Ultrasonic inspection of conductive samples can be performed using electromagnetic acoustic transducers (EMATs). These allow generation of guided waves, such as Lamb waves, in thin plates. Lamb waves are used for defect screening as they can travel long distances with relatively little attenuation. However, large wavelengths are used, which results in poor sensitivity to subwavelength sized defects. This work presents methods for using Lamb waves to detect smaller defects. Curved, geometrically focused EMATs were used to generate and detect Lamb waves in a 1 mm thick aluminum plate. The focal spot of these EMATs is investigated and the dependence of the focal spot dimensions and locations on the wavelength of the generation signal are presented. An array of geometrically focused detection EMATs was used to measure a 10×10×0.5mm square machined defect, simulating wall thinning. Perturbations in the pulse transmission in the region of the defect were detected, along with reflections, with each detector in the array sensitive to different defect features. B-scans and C-scans are presented utilizing these perturbations and reflections to locate, size, and image the machined defect. Analysis of data from the B-scan is shown to accurately size the defect width to within ±0.73mm. Very good agreement is shown between the C-scan images and the known location and orientation of the defect. Data fusion techniques are presented to combine data sets from different receiver EMATs and increase the defect detection capability, accuracy, and precision, with the potential for full defect sizing demonstrated.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3