Affiliation:
1. Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, N. Y. 14853
Abstract
A numerical scheme for time-dependent inelastic analysis of transverse deflection of plates of arbitrary shape by the boundary element method is presented in this paper. The governing differential equation is the inhomogeneous biharmonic equation for the rate of small transverse deflection. This complicated boundary-value problem for an arbitrarily shaped plate is solved by using a novel combination of the boundary element method and finite-element methodology. The number of unknowns, however, depends upon the boundary discretization and is therefore less than in a finite-element model. A combined creep-plasticity constitutive theory with state variables is used to model material behavior. The computer code developed can solve problems for an arbitrarily shaped plate with clamped or simply supported boundary conditions and an arbitrary loading history. Some illustrative numerical results for clamped and simply supported rectangular and triangular plates, under various loading histories, are presented and discussed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献