Viscous Simulation Method for Unsteady Flows Past Multicomponent Configurations

Author:

Fouladi Kamran1,Baysal Oktay1

Affiliation:

1. Mechanical Engineering and Mechanics Department, Old Dominion University, Norfolk, VA 23529

Abstract

An algorithm is developed to obtain numerical simulations of flows about complex configurations composed of multiple and nonsimilar components with arbitrary geometries. The algorithm uses a hybridization of the domain decomposition techniques for grid generation and to reduce the computer memory requirement. Three-dimensional Reynolds-averaged, unsteady, compressible, and full Navier-Stokes equations are solved on each of the subdomains by a fully vectorized, finite-volume, upwind-biased, approximately factored, and multigrid method. The effect of Reynolds stresses is incorporated through an algebraic turbulence model with several modifications for interference flows. The algorithm is applied to simulate supersonic flows past an ogive-nose-cylinder near or inside a cavity. The cylinder is attached to an offset L-shaped sting when placed above the cavity opening. The unsteady nature of these flowfields and the interaction of the cavity shear layer with the cylinder are simulated. These cases illustrate two significantly different and important interference characteristics for an internally carried store separating from its parent body. Unsteadiness of the cavity flow has a more pronounced effect on the normal forces acting on the cylinder when the cylinder is placed inside the cavity. The time averaged surface pressures compare favorably with the wind tunnel data, despite the averaging time period for the computations being three orders of magnitude smaller than that of the experimental measurements.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3