Simulating Area Conservation and the Gas-Wall Interface for One-Dimensional Based Diesel Particulate Filter Models

Author:

Depcik Christopher1,Assanis Dennis2

Affiliation:

1. Department of Mechanical Engineering, The University of Kansas, 3120 Learned Hall, 1530 West 15th Street, Lawrence, KS 66045-7609

2. Department of Mechanical Engineering, The University of Michigan, 2045 W.E. Lay Automotive Laboratory, 1231 Beal Avenue, Ann Arbor, MI 48109

Abstract

Researchers have been using one-dimensional based models of diesel particulate filters (DPFs) for over two decades with good success in comparison to measured experimental data. Recent efforts in literature have expanded the classical model to account for the effects of varying soot layer thickness on the flow area of the gases. However, some discrepancies exist with respect to this formulation and the physical phenomena modeled in the channel equations. In addition, there is still some discussion regarding the calculation of the gas temperature within the soot and wall layers. As a result, this paper presents a model to discuss these different phenomena to remove or validate previous assumptions. In specific, formulation of the flow equations in area-conserved format (or quasi-one-dimensional) allows the model to account for the changes in the gaseous area as a function of soot loading. In addition, imposing thermodynamic equilibrium at the interface of the channels and wall layers allows the model to capture the thermal entrance lengths. These tasks were undertaken to illustrate whether or not the results justify the effort is worthwhile and this additional complexity needs to be incorporated within the model. By utilizing linear density interpolation in the wall to increase the computational efficiency of the code, it was determined that the classical model assumptions of neglecting soot thickness and gas temperature in the wall are valid within the range of typical DPF applications.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3