Laser Direct-Part Marking of Data Matrix Symbols on Carbon Steel Substrates

Author:

Jangsombatsiri Witaya1,Porter J. David2

Affiliation:

1. Department of Industrial Technology, Mississippi Valley State University, Itta Bena, MS 38941

2. Department of Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331

Abstract

Certain applications have recently appeared in industry where a traditional bar code printed on a label will not survive because the item to be tracked has to be exposed to harsh environments. Laser direct-part marking is a manufacturing process used to create permanent marks on a substrate that could help to alleviate this problem. In this research, a 532 nm Nd:YAG laser was utilized to produce Data Matrix symbols onto carbon steel substrates. The quality of the laser marked Data Matrix symbol was then evaluated according to the ISO/IEC 16022 bar code technology specification for Data Matrix. Several experiments were conducted to explore the effects that different parameters have on the quality of the laser direct-part marked symbols. Parameters such as type of carbon steel, percent of laser tool path overlap, profile speed, average power, and frequency were found to have significant effects on the quality of the Data Matrix symbols produced with the laser. The analysis of the results indicated that contrast and print growth were the critical ISO/IEC 16022 standard performance measures that limited the laser marked Data Matrix symbols from achieving a higher final grade.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference26 articles.

1. Direct Marking Trends;Payne;ID Syst.

2. 2-D is Starting to Measure Up;Sharp;Supply Chain Syst. Mag.

3. Aesthetic Laser Marking Assessment Using Luminance Ratios;Ng;Opt. Lasers Eng.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3