Elastic Response of Acoustic Coating on Fluid-Loaded Rib-Stiffened Cylindrical Shells

Author:

Doherty Christopher Gilles1,Southward Steve C.2,Hull Andrew J.3

Affiliation:

1. Department of Mechanical Engineering,Virginia Polytechnic Institute andState University,Blacksburg, VA 24061e-mail: dohertyc@vt.edu

2. Department of Mechanical Engineering,Virginia Polytechnic Institute andState University,Blacksburg, VA 24061e-mail: scsouth@vt.edu

3. Undersea Warfare Weapons, Vehicles andDefensive Systems Department,Naval Undersea Warfare Center Division,Newport, RI 02841e-mail: andrew.hull@navy.mil

Abstract

Reinforced cylindrical shells are used in numerous industries; common examples include undersea vehicles, aircraft, and industrial piping. Current models typically incorporate approximation theories to determine shell behavior, which are limited by both thickness and frequency. In addition, many applications feature coatings on the shell interior or exterior that normally have thicknesses which must also be considered. To increase the fidelity of such systems, this work develops an analytic model of an elastic cylindrical shell featuring periodically spaced ring stiffeners with a coating applied to the outer surface. There is an external fluid environment. Beginning with the equations of elasticity for a solid, spatial-domain displacement field solutions are developed incorporating unknown wave propagation coefficients. These fields are used to determine stresses at the boundaries of the shell and coating, which are then coupled with stresses from the stiffeners and fluid. The stress boundary conditions contain double-index infinite summations, which are decoupled, truncated, and recombined into a global matrix equation. The solution to this global equation results in the displacement responses of the system as well as the exterior scattered pressure field. An incident acoustic wave excitation is considered. Thin-shell reference models are used for validation, and the predicted system response to an example simulation is examined. It is shown that the reinforcing ribs and coating add significant complexity to the overall cylindrical shell model; however, the proposed approach enables the study of structural and acoustic responses of the coupled system.

Funder

Office of Naval Research Global

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3