Dynamic Response of a High-Speed Slider-Crank Mechanism With an Elastic Connecting Rod

Author:

Chu S.-C.1,Pan K. C.1

Affiliation:

1. Research Directorate, General Thomas J. Rodman Laboratory, Rock Island Arsenal, Rock Island, Ill.

Abstract

To achieve the performance of a mechanism to a higher degree of accuracy requires that the elastic deformations of a member in a mechanism under dynamic loading conditions be taken into account. Coupled nonlinear governing partial differential equations have been derived for transverse and longitudinal vibrations of an elastic connecting rod in a slider-crank mechanism operating at high speed conditions. The derived coupled governing nonlinear partial differential equations of motion were transformed into ordinary differential equations by use of the Kantorovich method and the method of weighted residuals. The resulting coupled ordinary differential equations were solved numerically by use of the piecewise polynomial method and the fourth-order Runge-Kutta method. The dynamic response of the system has been investigated on the basis of natural frequencies of the first mode free vibrations, the ratios of the length of crank to the length of connecting rod, viscous damping, and rotating speeds of crank. These parameters can be used by the designer to predict the vibrations of an elastic mechanism under high-speed conditions.

Publisher

ASME International

Subject

General Medicine

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3