Structure and Dynamics of Bounded Vortex Flows With Different Nozzle Heights

Author:

Green A. M.1,Marshall J. S.2

Affiliation:

1. School of Engineering, University of Vermont, Burlington, VT 05405

2. School of Engineering, University of Vermont, Burlington, VT 05405 e-mail:

Abstract

A bounded vortex flow is generated by a nozzle with a central suction outlet surrounded by inlet jets with a 15 deg inclination in the azimuthal direction. The jets impinge on a flat surface called the impingement surface. The circulation introduced by azimuthal tilting of the inlet jets is concentrated at the flow centerline by the suction outlet to form a wall-normal vortex, with axis nominally orthogonal to the impingement surface. An experimental study was conducted in water to examine the structure and dynamics of bounded vortex flows with balanced inlet and outlet flow rates for different values of the separation distance h between the nozzle face and the impingement surface. The experiments used a combination of laser-induced fluorescence (LIF) to visualize the vortex and jet flow structure and particle-image velocimetry (PIV) for quantitative velocity measurements along a planar slice of the flow. Different liquid flow rates were examined for each separation distance. The results show that a stationary wall-normal vortex is formed at small separation distances, such as when the ratio of h to the inlet jet radial position R is set to h/R=0.67. When the separation distance is increased such that h/R=1.3, the intake vortex first becomes asymmetric, drifting to the one side of the flow, and then bifurcates into a vortex pair that rotates in a V-state around the flow centroid. At large separation distances (e.g., h/R=6.7), the intake vortex adopts a spiral structure that is surrounded by the inlet jets, with upward-flowing exterior fluid at the center of the spiral vortex structure. The arms of this spiral are advected downward with time by the inlet jet flow until they reach the impingement surface. Knowledge of this flow structure at different separation distances is necessary in order to design systems that utilize this flow field for enhancement of particle removal rate or heat/mass transfer from a surface.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3