The Fuel Mix Limits and Efficiency of a Stoichiometric, Ammonia, and Gasoline Dual Fueled Spark Ignition Engine

Author:

Grannell Shawn M.1,Assanis Dennis N.1,Bohac Stanislav V.1,Gillespie Donald E.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2133

Abstract

An overall stoichiometric mixture of air, gaseous ammonia, and gasoline was metered into a single cylinder, variable compression ratio, supercharged cooperative fuel research (CFR) engine at varying ratios of gasoline to ammonia. The engine was operated such that the combustion was knock-free with minimal roughness for all loads ranging from idle up to a maximum load in the supercharge regime. For a given load, speed, and compression ratio, there was a range of ratios of gasoline to ammonia for which knock-free, smooth firing was obtained. This range was investigated at its rough limit and also at its maximum brake torque (MBT) knock limit. If too much ammonia was used, then the engine fired with an excessive roughness. If too much gasoline was used, then knock-free combustion could not be obtained while the maximum brake torque spark timing was maintained. Stoichiometric operation on gasoline alone is also presented, for comparison. It was found that a significant fraction of the gasoline used in spark ignition engines could be replaced with ammonia. Operation on about 100% gasoline was required at idle. However, a fuel mix comprising 70% ammonia∕30% gasoline on an energy basis could be used at normally aspirated, wide open throttle. Even greater ammonia to gasoline ratios were permitted for supercharged operation. The use of ammonia with gasoline allowed knock-free operation with MBT spark timing at higher compression ratios and higher loads than could be obtained with the use of gasoline alone.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3