How Stapes Ankylosis and Fracture Affect Middle Ear Dynamics: A Numerical Study

Author:

Lobato Lucas1,Paul Stephan2,Cordioli Júlio2,Cruz Oswaldo L. M.3

Affiliation:

1. Acoustical and Vibration Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil e-mail:

2. Acoustical and Vibration Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil

3. Otolaryngology and Head and Neck Surgery Department, Federal University of São Paulo, São Paulo 04021-001, Brazil

Abstract

Numerical models of the human middle ear have been developed throughout the last 30 years, for different purposes. While several types of pathologies have been studied, stapedial disorders were seldomly explored. This papers aims to clarify how stapes fracture and some forms of stapes ankylosis, such as stapedial tendon (ST) ossification, augmented pyramidal eminence (PE) and bony bar presence, affect the sound transmission through the middle ear. In addition, the stapes dynamics is also analyzed by means of total displacement and first principal strain. For the purpose of the study, first, a three-dimensional finite element model of the human middle ear is detailed and validated under normal (healthy) conditions. The model is then modified to represent the stapedial disorders of interest. A measure is established for evaluating how the disorders reduce sound transmission through the middle ear. Results of the reduction of sound transmission showed that the different forms of stapes ankylosis affect primarily low frequencies, while the stapes fracture mostly affects high frequency sound transmission. According to the results, an augmented PE does not restrict stapes movement unless followed by some ossification of the ST. In addition, the question whether the fracture is in the anterior or posterior crus and the distance of the fractured part from the stapes footplate have a relevant role in the reduction of the sound transmission. Finally, the analysis of total displacement and first principal strain of the stapes helped to highlight some differences among the stapedial disorders.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3