Diffusive Transport in the Vitreous Humor: Experimental and Analytical Studies

Author:

Penkova Anita12,Moats Rex34,Humayun Mark S.5,Fraser Scott678,Sadhal Satwindar Singh139

Affiliation:

1. Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453;

2. Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027

3. Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027;

4. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1111

5. Department of Ophthalmology, USC Roski Eye Institute, Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-4682; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1111

6. Departments of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089-0371;

7. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1111;

8. Departments of Pediatrics, Ophthalmology, Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-4682

9. Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-4682 e-mail:

Abstract

In relation to intravitreal drug delivery, predictive mathematical models for drug transport are being developed, and to effectively implement these for retinal delivery, the information on biophysical properties of various ocular tissues is fundamentally important. It is therefore necessary to accurately measure the diffusion coefficient of drugs and drug surrogates in the vitreous humor. In this review, we present the studies conducted by various researchers on such measurements over the last several decades. These include imaging techniques (fluorescence and magnetic resonance imaging (MRI)) that make use of introducing a contrast agent or a labeled drug into the vitreous and tracking its diffusive movement at various time points. A predictive model for the same initial conditions when matched with the experimental measurements provides the diffusion coefficient, leading to results for various molecules ranging in size from approximately 0.1 to 160 kDa. For real drugs, the effectiveness of this system depends on the successful labeling of the drugs with suitable contrast agents such as fluorescein and gadolinium or manganese so that fluorescence or MR imagining could be conducted. Besides this technique, some work has been carried out using the diffusion apparatus for measuring permeation of a drug across an excised vitreous body from a donor chamber to the receptor by sampling assays from the chambers at various time intervals. This has the advantage of not requiring labeling but is otherwise more disruptive to the vitreous. Some success with nanoparticles has been achieved using dynamic light scattering (DLS), and presently, radioactive labeling is being explored.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3