Affiliation:
1. Thermochemical Power Group, Dipartimento di Macchine Sistemi Energetici e Trasporti, via Montallegro 1, Università di Genova, 1614S Genova, Italy
Abstract
A dynamic solid oxide fuel cell (SOFC) model was integrated with other system components (i.e., reformer, anodic off-gas burner, anodic ejector) to build a system model that can simulate the time response of the anode side of an integrated 250kW pressurized SOFC hybrid system. After model description and data on previous validation work, this paper describes the results obtained for the dynamic analysis of the anodic loop, taking into account two different conditions for the fuel flow input: in the first case (I), the fuel flow follows with no delay the value provided by the control system, while in the second case (II), the flow is delayed by a volume between the regulating valve and the anode ejector, this being a more realistic case. The step analysis was used to obtain information about the time scales of the investigated phenomena: such characteristic times were successfully correlated to the results of the subsequent frequency analysis. This is expected to provide useful indications for designing robust anodic loop controllers. In the frequency analysis, most phase values remained in the 0–180deg range, thus showing the expected delay-dominated behavior in the anodic loop response to the input variations in the fuel and current. In Case I, a threshold frequency of 5Hz for the pressure and steam to carbon ratio and a threshold frequency of 31Hz for the anodic flow were obtained. In the more realistic Case II, natural gas pipe delay dominates, and a threshold frequency of 1.2Hz was identified, after which property oscillations start to decrease toward null values.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献