A Computational Study of Turbulent Airflow and Tracer Gas Diffusion in a Generic Aircraft Cabin Model

Author:

Ebrahimi Khosrow1,Zheng Zhongquan C.2,Hosni Mohammad H.3

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 e-mail:

2. Fellow ASME Department of Aerospace Engineering, University of Kansas, 1530 W 15th Street Lawrence, KS 66045 e-mail:

3. Fellow ASME Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 e-mail:

Abstract

In order to study the capability of computational methods in investigating the mechanisms associated with disease and contaminants transmission in aircraft cabins, the computational fluid dynamics (CFD) models are used for the simulation of turbulent airflow and tracer gas diffusion in a generic aircraft cabin mockup. The CFD models are validated through the comparisons of the CFD predictions with corresponding experimental measurements. It is found that using large eddy simulation (LES) with the Werner-Wengle wall function, one can predict unsteady airflow velocity field with relatively high accuracy. However in the middle region of the cabin mockup, where the recirculation of airflow takes place, the accuracy is not as good as that in other locations. By examining different k-ε models, the current study recommends the use of the RNG k-ε model with the nonequilibrium wall function as an Reynolds averaged Navier-Stokes model for predicting the steady-state airflow velocity. It is also found that changing the nozzle height has a significant effect on the flow behavior in the middle and upper part of the cabin, while the flow pattern in the lower part is not affected as much. Through the use of LES and species transport model in simulating tracer gas diffusion, a very good agreement between predicted and measured tracer gas concentration is achieved for some monitoring locations, but the agreement level is not uniform for all the locations. The reasons for the deviations between prediction and measurement for those locations are discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference25 articles.

1. CFD Validation for Contaminant Transport in Aircraft Cabin Ventilation Fields,2004

2. Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins–Part I: Numerical Simulation of the Flow Field;ASHRAE Trans.,2005

3. Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins–Part II: Numerical Simulation of Airborne Pathogen Transport;ASHRAE Trans.,2005

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3