Geometrical Effects on the Temperature Distribution in a Half-Space Due to a Moving Heat Source

Author:

Akbari Mohsen1,Sinton David2,Bahrami Majid1

Affiliation:

1. Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC, V3T 0A3, Canada

2. Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 2Y2, Canada

Abstract

Fundamental problem of heat transfer within a half-space due to a moving heat source of hyperelliptical geometry is studied in this work. The considered hyperelliptical geometry family covers a wide range of heat source shapes, including star-shaped, rhombic, elliptical, rectangular with round corners, rectangular, circular, and square. The effects of the heat source speed, aspect ratio, corners, and orientation are investigated using the general solution of a moving point source on a half-space and superposition. Selecting the square root of the heat source area as the characteristics length scale, it is shown that the maximum temperature within the half-space is a function of the heat source speed (Peclet number) and its aspect ratio. It is observed that the details of the exact heat source shape have negligible effect on the maximum temperature within the half-space. New general compact relationships are introduced that can predict the maximum temperature within the half-space with reasonable accuracy. The validity of the suggested relationships is examined by available experimental and numerical data for the grinding process, for medium Peclet numbers. For ultrafast heat sources, an independent experimental study is performed using a commercial CO2 laser system. The measured depth of the engraved grooves is successfully predicted by the proposed relationships.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3