Estimation of Optimal Blank Holder Force Trajectories in Segmented Binders Using an ARMA Model

Author:

Krishnan Neil1,Cao Jian1

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

Abstract

Sheet metal forming is one of the most important and frequently used manufacturing processes in industry today. One of the key parameters affecting the forming process is the blank holder force (BHF). In the past, researchers have demonstrated the advantages of varying the blank holder force during the forming process, that is, the two primary modes of failure in sheet metal forming (wrinkling and tearing) are avoided. This gives rise to improved formability, higher accuracy and better part consistency. In recent years, researchers have also shown increasing interest in forming processes where the blank holder force is varied spatially with the help of segmented binders or flexible binders. In this paper, we have combined the above two aspects and used a robust method to determine the blank holder force trajectories for a non-circular part using segmented binders. The proposed strategy is verified by implementing it into a finite element simulation. Binder force is treated as a system input. The displacement of the binder is used as a measure of the tendency to wrinkle, and is therefore treated as a system output. The parameters of the system are continuously identified and updated using a deterministic Auto-Regressive Moving-Average model (ARMA). The model is then used to control the binder displacement to a prescribed value by adjusting the system input, i.e., the binder force. In this manner, individual binder force profiles for each of the segmented binders are obtained. Due to the generic nature of the ARMA model, the strategy proposed in this paper can be applied to a variety of forming problems, making it a robust approach.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3