Affiliation:
1. Professor Department of Mathematics, Bangalore University, Bangalore 560056, India e-mail:
2. Department of Mathematics, Bangalore University, Bangalore 560056, India e-mail:
Abstract
Unicellular Rayleigh–Bénard convection of water–copper nanoliquid confined in a high-porosity enclosure is studied analytically. The modified-Buongiorno–Brinkman two-phase model is used for nanoliquid description to include the effects of Brownian motion, thermophoresis, porous medium friction, and thermophysical properties. Free–free and rigid–rigid boundaries are considered for investigation of onset of convection and heat transport. Boundary effects on onset of convection are shown to be classical in nature. Stability boundaries in the R1*–R2 plane are drawn to specify the regions in which various instabilities appear. Specifically, subcritical instabilities' region of appearance is highlighted. Square, shallow, and tall porous enclosures are considered for study, and it is found that the maximum heat transport occurs in the case of a tall enclosure and minimum in the case of a shallow enclosure. The analysis also reveals that the addition of a dilute concentration of nanoparticles in a liquid-saturated porous enclosure advances onset and thereby enhances the heat transport irrespective of the type of boundaries. The presence of porous medium serves the purpose of heat storage in the system because of its low thermal conductivity.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献