Effects of Wobbe Index on the Combustion and Emission Characteristics of a Natural Gas/Diesel RCCI Engine

Author:

Zhou Weijian1,Xi Hongyuan1,Zhou Song1,Shreka Majed1,Zhang Zhao1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University , Harbin 150001, China

Abstract

Abstract Due to energy shortage and environmental problems, the application of natural gas in internal combustion engine has attracted extensive attention. Therefore, diesel pilot ignition natural gas engine is a promising technology. However, the different sources of natural gas lead to the change in composition, which has a great impact on engine combustion and emission. In this study, the relationship between Wobbe index (WI) and swirl ratio (SR) of six different natural gas mixtures was studied by numerical simulation method. Besides, reactivity controlled compression ignition (RCCI) combustion strategy was evaluated. The results showed that increasing the WI increased the in-cylinder pressure and temperature, increased the ignition delay, and shortened the combustion duration, the gross indicated efficiency (GIE) of the six gases exceeded 50%. In addition, the increase of WI increased the nitrogen oxide (NOx) emissions and reduced the hydrocarbon (HC) and carbon monoxide (CO) emissions. Moreover, the peak pressure rise rate (PPRR) increased with the rise of WI, which may lead to engine knock. The results also showed that the increase of SR increased the in-cylinder pressure and temperature and improved the PPRR. When the SR was 0.7 and the WI was 51.7, the combustion and emission performance of the RCCI engine was relatively better.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3