Diesel and Compressed Natural Gas Dual Fuel Engine Operating Envelope for Heavy Duty Application

Author:

de Tablan Andrew1

Affiliation:

1. Southwest Research Institute, San Antonio, TX

Abstract

The abundance of natural gas in the United States and low price relative to diesel fuel has generated interest in dual fuel engines where natural gas is substituted for diesel fuel. The factors limiting the natural gas (NG) substitution rates are: minimum diesel injector pulse width, cycle-to-cycle variation in net indicated mean effective pressure (NIMEP), engine knock, peak cylinder pressure, compression ratio, boost pressure and lean air/fuel limits leading to misfire among others. The objective of this study was to explore the highest natural gas substitution for a commercially available heavy duty diesel engine for several of the 13 Mode European Stationary Cycle (ESC) and US EPA Supplementary Emissions Tests (SET) speeds and loads while maintaining acceptable engine performance levels. A heavy duty 2012 Navistar MaxxForce 13® engine was retrofitted to accommodate dual-fuel operation. The engine was operated over several different speeds and loads to determine the possible NG substitution rates at different diesel injection timings, diesel injection pressures and equivalence ratios, while maintaining combustion phasing. The data showed that dual fuel operation at high NG percentages was stable over several speeds and loads with brake thermal efficiencies comparable to 100% diesel operation. The introduction of NG generally demonstrated reductions in peak cylinder pressure and cylinder pressure rise rate at a given speed and load point. Increases in hydrocarbon and greenhouse gas emissions and a decrease in nitrogen oxides were observed during dual-fuel operation.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3