An Experimental Investigation of Combustion Chamber Design Parameters for Hot Surface Ignition

Author:

Chown Dan1,Habbaky Charles1,Wallace James S.1

Affiliation:

1. University of Toronto, Toronto, ON, Canada

Abstract

Natural gas requires some form of ignition assist in order to autoignite in the time available in a compression ignition engine. Ignition assist using a glow plug — a heated surface — was investigated using an apparatus that consists of an optically accessible constant volume combustion bomb coupled to a single cylinder CFR engine through the spark plug port. Previous studies have shown the dominant effect of fuel injection pattern and glow plug shield geometry on ignition delay, combustion rate, and fuel utilization with 1–3 fuel jets. New work has been carried out to evaluate the ability of a shielded glow plug to ignite a full nine jet symmetrical fuel injection pattern. The sensitivity of ignition delay and fuel utilization to fuel injector angular alignment relative to the glow plug, glow plug shield opening angle, and glow plug power was analyzed using in-cylinder pressure data and exhaust hydrocarbon emissions concentrations. Two glow plugs, one conventional metallic and one ceramic, and two fuel injector nozzle orifice sizes were evaluated for their effect on ignition delay. The ignition and flame propagation process was observed using high speed images. Glow plug power was shown to have a dominant effect on ignition delay and fuel utilization, with a secondary effect from fuel injector angle and glow plug opening angle. The ceramic glow plug was shown to provide superior ignition assist while consuming less power than the metallic glow plug. The larger fuel injector nozzle size increased ignition delay times, likely due to increased convective cooling of the glow plug surface from the larger gas jet. Acquired images show that the smaller fuel injector orifice size created a flammable path in two distinct areas; along the periphery of the fuel jets and between the fuel jets. The higher mass flow rate and subsequent increased mixing of the larger fuel jets created flammable paths throughout the entirety of the combustion chamber.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3