The Gas Bearing Interface of Opposed Recording Heads in a Disk Drive Utilizing Helium and Thin Titanium Foil Disks

Author:

White James1

Affiliation:

1. Antek Peripherals Inc., 6017 Glenmary Road, Knoxville, TN 37919

Abstract

Increased storage capacity and decreased power consumption are two key motivations in the development of hard disk drive (HDD) storage products. Two ideas that address these areas have recently received attention in the literature. These are (1) the use of helium instead of air as the working gas in the drive and (2) the incorporation of a thin metal foil as the disk substrate, replacing the much thicker aluminum or glass substrate of the hard disk (HD). The work that has been previously reported considered either the use of helium or thin foil substrates, but not both. This paper does consider both. It reports dynamic gas bearing simulation results for the helium filled interface between opposed recording heads and a disk whose substrate is a thin titanium foil. Motivation for the selection of titanium as the foil material is described in the paper. The thickness of the foil is chosen so as to achieve an optimal combination of centrifugal force and bending force that will provide required disk flatness and stability during high-speed rotation. Large-scale dynamic simulation is used to track the response of the recording head slider-foil disk interface due to mechanical shock in the vertical, pitch, and roll directions. Results are described and compared with those of the configuration that includes helium and a HD. Attention is focused on response to off-design conditions that can create head crash with the HD.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of titanium in the electronic industry;Titanium for Consumer Applications;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3