Exact Perturbation for the Vibration of Almost Annular or Circular Plates

Author:

Parker R. G.1,Mote C. D.2

Affiliation:

1. Department of Mechanical Engineering, Ohio State University, Columbus, OH

2. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720

Abstract

A perturbation solution is presented to analytically determine the eigensolutions for self-adjoint plate vibration problems on nearly annular or circular domains. The irregular domain eigensolutions are calculated as perturbations of the corresponding annular or circular domain eigensolutions. These perturbations are determined exactly. The simplicity of these exact solutions allows the perturbation to be carried through third order for distinct unperturbed eigenvalues and through second order for degenerate unperturbed eigenvalues. Furthermore, this simplicity allows the resulting orthonormalized eigenfunctions to be readily incorporated into response, system identification, and control analyses. The clamped, nearly circular plate is studied in detail, and the exact eigensolution perturbations are derived for an arbitrary boundary shape deviation. Rules governing the splitting of degenerate unperturbed eigenvalues at both first and second orders of perturbation are presented. These rules, which apply for arbitrary shape deviation, generalize those obtained in previous works where specific, discrete asymmetries and first order splitting are examined. The eigensolution perturbations and splitting rules reduce to simple, algebraic formulae in the Fourier coefficients of the boundary shape asymmetry. Elliptical plate eigensolutions are calculated and compared to finite element analysis and, for the fundamental eigenvalue, to the exact solution given by Shibaoka (1956).

Publisher

ASME International

Subject

General Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3