Method and Detailed Analysis of Individual Hydrocarbon Species From Diesel Combustion Modes and Diesel Oxidation Catalyst

Author:

Han Manbae1,Assanis Dennis N.1,Jacobs Timothy J.2,Bohac Stanislav V.1

Affiliation:

1. University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109

2. Texas A&M University, 321 EPB 3123 TAMU, College Station, TX 77843

Abstract

An undiluted exhaust hydrocarbon (HC) speciation method, using flame ionization detector gas chromatographs, is developed to investigate HC species from conventional and low-temperature premixed charge compression ignition (PCI) combustion pre- and postdiesel oxidation catalyst (DOC) exhaust. This paper expands on previously reported work by describing in detail the method and effectiveness of undiluted diesel exhaust speciation and providing a more detailed analysis of individual HC species for conventional and PCI diesel combustion processes. The details provided regarding the effectiveness of the undiluted diesel exhaust speciation method include the use of a fuel response factor for HC species quantification and demonstration of its linearity, detection limit, accuracy, and precision. The listing of individual HC species provides not only the information needed to design surrogate exhaust mixtures used in reactor tests and modeling studies but also sheds light on PCI combustion and DOC characteristics. Significantly increased engine-out concentrations of acetylene, benzene, and toluene support the theory that net soot reduction associated with PCI combustion occurs due to the reduction of soot formation (as opposed to increased soot oxidation). DOC oxidation behavior differs depending on the combustion characteristics, which change exhaust species and temperature.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3