Fatigue Properties of Narrow and Wide Gap Braze Repaired Joints

Author:

Henhoeffer Thomas1,Huang Xiao2,Yandt Scott3,Au Peter3

Affiliation:

1. Liburdi Turbine Services Incorporated, Dundas, ON L9H 7K4, Canada

2. Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

3. Institute for Aerospace Research, National Research Council, Ottawa, ON K1A 0R6, Canada

Abstract

With the increasing utilization of braze repair in the gas turbine industry, the properties of braze joints under simulated service conditions become vital in selecting braze repair over other processes. While braze repair has often been claimed to deliver mechanical properties equivalent to that of the parent material, this is largely based on the results of tensile or accelerated creep tests for most gas turbine hot section components failure occurs as a result of thermal fatigue or thermomechanical fatigue. The damage that occurs under such conditions cannot be assessed from tensile or creep testing. This study was undertaken to characterize the fatigue properties of narrow and wide gap brazed X-40 cobalt-based superalloy and compare these properties to that of the X-40 parent material. Butt joint narrow gap and wide gap specimens were vacuum brazed using BNi-9 braze alloy. X-40 and IN-738 were used as additive materials in wide gap braze joints. To characterize the fatigue properties of the braze joints and parent material, isothermal fatigue tests were conducted at 950°C and under load control using a fully reversed sinusoidal wave form having stress amplitude of 75% of the yield strength of the parent material. The braze specimens were fatigue tested in the as-brazed condition. The fatigue test results showed that the fatigue lives of the brazed specimens were lower than that of the parent material, particularly for the narrow gap samples and wide gap samples containing IN-738 additive alloy. All fatigue failures in the brazed samples occurred in the braze joints. An analysis of the fracture surfaces using a scanning electron microscope revealed that porosity was the major contributing factor to fatigue failures in the wide gap braze joints. The testing life debit observed in the narrow gap braze samples can be attributed to the presence of brittle boride phases in the braze joint. This study also included examination of techniques for reducing the aforementioned porosity and presence of brittle intermetallic phases.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference18 articles.

1. Wide Gap Brazing in the Maintenance of Turbine Guide Vanes;Jurgens;DVS–Ber.

2. Braze Repair of Aero Engine Components;Gove;Metals and Materials: The Journal of the Institute of Metals

3. Role of Brazing in Repair of Superalloy Components–Advantages and Limitations;Mattheij;Mater. Sci. Technol.

4. Repair Brazing of Gas Turbine Hot Parts–Methods and Joint Characterisation;Heikinheimo

5. Overview of Hot Section Component Repair Methods;Gandy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3