Limitations of the Short Bearing Approximation in Dynamically Loaded Narrow Hydrodynamic Bearings

Author:

Rezvani M. A.1,Hahn E. J.1

Affiliation:

1. The University of New South Wales, Kensington, Australia

Abstract

Transient solutions are still widely used for evaluating the vibrational behavior of rotor bearing systems containing dynamically loaded journal bearings with large unbalance, or noncircular orbit type squeeze film dampers, such as dampers without centralizing springs. For parametric design studies, such transient analyses need rapid means for evaluating the motion dependent fluid film forces and for narrow bearings or dampers (aspect ratios less than 0.5) the short bearing approximation (SBA) to the Reynolds equation has generally been assumed. Comparisons with exact numerical solutions under conditions of static loading and pure squeezing show that the SBA pressure profile predictions are significantly in error for aspect ratios as low as 0.25 at eccentricities around 0.9, whereas the optimal parabolic axial profile approximation (MSBA), while retaining all the rapid calculation features of the SBA, is accurate to within 1 percent under the same conditions and to within 3 percent for aspect ratios around 1.0. Using the MSBA as a yardstick under transient solution conditions, the SBA, while satisfactory for aspect ratios of 0.05, was found to be inadequate in predicting transient and steady state orbits and transmitted forces at aspect ratios of 0.5. At these aspect ratios, jump speeds and instability threshold speeds were also found to be erroneously predicted, with speed overestimates of 30 percent possible for practical unbalance situations. In view of the vastly improved accuracy obtainable by the MSBA, its use is to be preferred to the SBA under dynamic loading conditions for aspect ratios around 0.5, and probably around 0.25 or lower.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3