Effects of Nanoparticle Shape on Slot-Jet Impingement Cooling of a Corrugated Surface With Nanofluids

Author:

Selimefendigil Fatih1,Öztop Hakan F.2

Affiliation:

1. Department of Mechanical Engineering, Celal Bayar University, Manisa 45140, Turkey e-mail:

2. Professor Department of Mechanical Engineering, Technology Faculty, Firat University, Elaziğ 23119, Turkey e-mail:

Abstract

Numerical study of jet impingement cooling of a corrugated surface with water–SiO2 nanofluid of different nanoparticle shapes was performed. The bottom wall is corrugated and kept at constant surface temperature, while the jet emerges from a rectangular slot with cold uniform temperature. The finite volume method is utilized to solve the governing equations. The effects of Reynolds number (between 100 and 500), corrugation amplitude (between 0 and 0.3), corrugation frequency (between 0 and 20), nanoparticle volume fraction (between 0 and 0.04), and nanoparticle shapes (spherical, blade, brick, and cylindrical) on the fluid flow and heat transfer characteristics were studied. Stagnation point and average Nusselt number enhance with Reynolds number and solid particle volume fraction for both flat and corrugated surface configurations. An optimal value for the corrugation amplitude and frequency was found to maximize the average heat transfer at the highest value of Reynolds number. Among various nanoparticle shapes, cylindrical ones perform the best heat transfer characteristics in terms of stagnation and average Nusselt number values. At the highest solid volume concentration of the nanoparticles, heat transfer values are higher for a corrugated surface when compared to a flat surface case.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3