Effects of Accelerated Oxidation on Fuel Spray and Engine Characteristics of Karanja Biodiesel

Author:

Suraj C. K.1,Krishnasamy Anand1,Gowrishankar Sudarshan1,Sundararajan T.1

Affiliation:

1. Indian Institute of Technology Madras Department of Mechanical Engineering, , Chennai, Tamil Nadu 600036 , India

Abstract

Abstract The unsaturated content of biodiesel makes it prone to oxidation resulting in variations in the fuel properties, hindering its widespread application. Variations in biodiesel properties impact injection, spray, evaporation, mixing and combustion processes. The present study investigates the effect of accelerated oxidized Karanja biodiesel on injector flow, macroscopic spray, and engine characteristics. The accelerated oxidation of Karanja biodiesel is carried out by heating and bubbling the air through the fuel. The variations in fuel properties that profoundly influence spray and engine characteristics are analyzed before and after accelerated oxidation. Even though biodiesel viscosity is increased beyond the ASTM specification limit due to accelerated oxidation, the variations in the density, surface tension, and calorific value are marginal. The injector flow and macroscopic spray characteristics are investigated for fresh and oxidized biodiesel using a constant volume spray chamber at different chamber and injection pressures. The results indicate a similar fuel flowrate and injection velocity for the fresh and oxidized biodiesels at identical test conditions. Under identical test conditions, the macroscopic spray characteristics between the test fuels are negligible. Engine experiments with fresh and oxidized biodiesel are carried out in an automotive truck diesel engine at rated torque speed and variable load conditions. A shorter ignition delay (∼20% lower), less intense premixed combustion, and lower nitrogen oxide (NOx) emissions (∼27% lower) are observed with oxidized biodiesel. The study concludes that despite significant variations in the kinematic viscosity of fresh and oxidized biodiesels (∼28% higher), the variations in macroscopic spray and engine performance characteristics are insignificant.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3